TEACHERS FORUM<sup>®</sup>



## QUESTION BANK (solved)

### Class VIII

### MATHEMATICS

SUBJECT EXPERTS



| 1. | RATIONAL NUMBERS                                        | 005 - 014 |
|----|---------------------------------------------------------|-----------|
|    | NCERT Solutions                                         |           |
|    | Additional Questions and Answers & Self assessment Test |           |
| 2. | LINEAR EQUATIONS IN ONE VARIABLE                        | 015 - 033 |
|    | NCERT Solutions                                         |           |
|    | Additional Questions and Answers & Self assessment Test |           |
| 3. | UNDERSTANDING QUADRILATERALS                            | 034 - 054 |
|    | NCERT Solutions                                         |           |
|    | Additional Questions and Answers & Self assessment Test |           |
| 4. | PRACTICAL GEOMETRY                                      | 055 - 061 |
|    | NCERT Solutions                                         |           |
| 5. | DATA HANDLING                                           | 062 - 072 |
|    | NCERT Solutions                                         |           |
|    | Additional Questions and Answers & Self assessment Test |           |
| 6. | SQUARES AND SQUARE ROOTS                                | 073 - 089 |
|    | NCERT Solutions                                         |           |
|    | Additional Questions and Answers & Self assessment Test |           |
| 7. | CUBES AND CUBE ROOTS                                    | 090 - 098 |
|    | NCERT Solutions                                         |           |
|    | Additional Questions and Answers & Self assessment Test |           |
| 8. | COMPARING QUANTITIES                                    | 099 - 118 |
|    | NCERT Solutions                                         |           |
|    | Additional Questions and Answers & Self assessment Test |           |

| 9.  | ALGEBRAIC EXPRESSIONS AND IDENTITIES                    | 119 - 138 |
|-----|---------------------------------------------------------|-----------|
|     | NCERT Solutions                                         |           |
|     | Additional Questions and Answers & Self assessment Test |           |
| 10. | VISUALIZING SOLID SHAPES                                | 139 - 151 |
|     | NCERT Solutions                                         |           |
|     | Additional Questions and Answers & Self assessment Test |           |
| 11. | MENSURATION                                             | 152 - 171 |
|     | NCERT Solutions                                         |           |
|     | Additional Questions and Answers & Self assessment Test |           |
| 12. | EXPONENTS AND POWERS                                    | 172 - 179 |
|     | NCERT Solutions                                         |           |
|     | Additional Questions and Answers & Self assessment Test |           |
| 13. | DIRECT AND INVERSE PROPORTIONS                          | 180 - 193 |
|     | NCERT Solutions                                         |           |
|     | Additional Questions and Answers & Self assessment Test |           |
| 14. | FACTORIZATION                                           | 194 - 209 |
|     | NCERT Solutions                                         |           |
|     | Additional Questions and Answers & Self assessment Test |           |
| 15  | INTRODUCTION TO GRAPHS                                  | 210 - 220 |
|     | NCERT Solutions                                         |           |
|     | Additional Questions and Answers & Self assessment Test |           |
| 16. | PLAYING WITH NUMBERS                                    | 221 - 228 |
|     | NCERT Solutions                                         |           |
|     | Additional Questions and Answers & Self assessment Test |           |

-

-



# **RATIONAL NUMBERS**

#### NCERT SOLUTIONS

#### EXERCISE - 1.1

- 1. Using appropriate properties find:
  - (i)  $-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} \frac{3}{5} \times \frac{1}{6}$
- **Ans.** (i)  $-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} \frac{3}{5} \times \frac{1}{6}$

$$= -\frac{2}{3} \times \frac{3}{5} - \frac{3}{5} \times \frac{1}{6} + \frac{5}{2}$$

[Using associative property]

 $=\frac{3}{5}\left(\frac{-2}{3}-\frac{1}{6}\right)+\frac{5}{2}$ 

[Using distributive property]

 $= \frac{3}{5} \left( \frac{-4}{6} - 1 \right) + \frac{5}{2} = \frac{3}{5} \times \frac{-5}{6} + \frac{5}{2}$  $= -\frac{1}{2} + \frac{5}{2} = \frac{-1+5}{2} = \frac{4}{2} = 2$ 

(ii)  $\frac{2}{5} \times \left(\frac{3}{-7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$ (ii)  $\frac{2}{5} \times \left(\frac{3}{-7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$  $= \frac{2}{5} \times \left(\frac{-3}{7}\right) + \frac{1}{14} \times \frac{2}{5} - \frac{1}{6} \times \frac{3}{2}$ 

[Using associative property]

$$= \frac{2}{5} \times \left(\frac{-3}{7} + \frac{1}{14}\right) - \frac{1}{4}$$

[Using distributive property]

$$= \frac{2}{5} \times \left(\frac{-6+1}{14}\right) - \frac{1}{4} = \frac{2}{5} \times \frac{-5}{14} - \frac{1}{4}$$
$$= \frac{-1}{7} - \frac{1}{4} = \frac{-4-7}{28} = \frac{-11}{28}$$

- 2. Write the additive inverse of each of the following
- (i)  $\frac{2}{8}$  (ii)  $\frac{-5}{9}$  (iii)  $\frac{-6}{-5}$  (iv)  $\frac{2}{-9}$  (v)  $\frac{19}{-6}$  **Ans.** (i) Additive inverse of  $\frac{2}{8}$  is  $\frac{-2}{8}$ . (ii) Additive inverse of  $\frac{-5}{9}$  is  $\frac{5}{9}$ . (iii) Additive inverse of  $\frac{-6}{-5}$  is  $\frac{-6}{5}$ . (iv) Additive inverse of  $\frac{2}{-9}$  is  $\frac{2}{9}$ . (v) Additive inverse of  $\frac{19}{-6}$  is  $\frac{19}{6}$ . 3. Verify that -(-x) = x for: (i)  $x = \frac{11}{15}$  (ii)  $x = -\frac{13}{17}$  **Ans.** (i) Put  $x = \frac{11}{15}$  in -(-x) = x,  $-\left(-\frac{11}{15}\right) = \frac{11}{15} \Rightarrow \frac{11}{15} = \frac{11}{15}$

$$\Rightarrow LHS = R.H.S. Hence, verified.$$
(ii) Put  $x = \frac{-13}{17}$  in - (-x) = x,  
 $-\left\{-\left(-\frac{13}{17}\right)\right\} = \frac{-13}{17} \Rightarrow \frac{-13}{17} = \frac{-13}{17}$   
 $\Rightarrow L.H.S. = R.H.S. Hence, verified.
4. Find the multiplicative inverse of the following :
(i) -13 (ii)  $\frac{-13}{19}$  (iii)  $\frac{1}{5}$  (iv)  $\frac{-5}{8} \times \frac{-3}{7}$  (v) -1  $\times \frac{-2}{5}$  (vi) -1  
**Ans.** (i) Multiplicative inverse of -13 is  $\frac{-1}{13}$  (ii) Multiplicative inverse of  $\frac{-13}{19}$  is  $\frac{-19}{13}$ .  
(iii) Multiplicative inverse of  $\frac{1}{5}$  is 5.  
(iv)  $\frac{-5}{-8} \times \frac{-3}{7} = \frac{15}{56}$  .Multiplicative inverse of  $\frac{-5}{8} \times \frac{-3}{7}$  is  $\frac{56}{15}$ .  
(v) Multiplicative inverse of -1  $\times \frac{-2}{5} = \frac{2}{5}$  is  $\frac{5}{2}$ .  
(vi) Multiplicative inverse of -1 is  $\frac{1}{-1}$ .  
5. Name the property under multiplication used in each of the following:  
(i)  $\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5}$  (ii)  $-\frac{13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$  (iii)  $\frac{-19}{29} \times \frac{29}{-19} = 1$   
**Ans.** (i) Multiplicative inverse property  
(ii) Multiplicative inverse property  
6. Multiply  $\frac{6}{13}$  by the reciprocal of  $\frac{-7}{16}$ .  
**Ans.** The reciprocal of  $\frac{-7}{16}$  is  $\frac{-16}{7}$ .  
According to the question,  $\frac{6}{13} \times \left(\frac{-16}{7}\right) = \frac{-96}{91}$   
7. Tell what property allows you to compute  $\frac{1}{3} \times \left(6 \times \frac{4}{3}\right)$  as  $\left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$ .  
**Ans.** Associative property of multiplication, a  $\times$  (b  $\times$  c) = (a  $\times$  b)  $\times$  c.  
8. Is  $\frac{8}{9}$  the multiplicative inverse of a rational number a is  $\left(\frac{1}{a}\right)$ , if a  $\times \frac{1}{a} = 1$ .  
So,  $\frac{8}{9} \times \left(-1\frac{1}{8}\right) = \frac{8}{9} \times \frac{-9}{8} = -1$   
TEACHERS FORUM$ 

But its product must be positive 1. Therefore,  $\frac{8}{9}$  is not the multiplicative inverse of  $\left(-1\frac{1}{8}\right)$ . Is 0.3 the multiplicative inverse of  $3\frac{1}{3}$ ? Why or why not? 9. Ans.  $0.3 \times 3\frac{1}{3} = \frac{3}{10} \times \frac{10}{3} = 1$ . Therefore, 0.3 is the multiplicative inverse of  $3\frac{1}{3}$ . 10. Write: The rational number that does not have a reciprocal. (i) (ii) The rational numbers that are equal to their reciprocals. (iii) The rational number that is equal to its negative. Ans. (i) 0 (ii) 1 and -1 (iii) 0 11. Fill in the blanks: (i) Zero has \_\_\_\_\_ reciprocal. (ii) The numbers \_\_\_\_\_\_ and \_\_\_\_\_ are their own reciprocals. (iii) The reciprocal of -5 is \_\_\_\_\_. (iv) Reciprocal of  $\frac{1}{r}$ , where  $x \neq 0$  is \_\_\_\_\_. (v) The product of two rational numbers is always a \_\_\_\_\_\_ (vi) The reciprocal of a positive rational number is \_\_\_\_\_ (ii) 1, -1 (iii)  $\frac{-1}{5}$  (iv) x (v) Rational Number (vi) Positive Ans. (i) No **EXERCISE 1.2** Represent these numbers on the number line: (i)  $\frac{1}{4}$  (ii)  $\frac{-5}{6}$ 1. **Ans.** (i)  $\frac{7}{4} = 1 \frac{3}{4}$ Here, A represents  $\frac{1}{4}$  $\frac{-5}{6}$ (ii) 0 Here, B represents

2. Represent 
$$\frac{-2}{11}$$
,  $\frac{-5}{11}$ ,  $\frac{-9}{11}$  and R =  $\frac{-9}{11}$   
Ans. Here, P =  $\frac{-2}{11}$ , Q =  $\frac{-5}{11}$  and R =  $\frac{-9}{11}$   
 $\overbrace{-\frac{-1}{11}} + \frac{-9}{11} + \frac{-8}{11} + \frac{-7}{11} + \frac{-6}{11} + \frac{-5}{11} + \frac{4}{11} + \frac{-3}{11} + \frac{-2}{11} + \frac{-1}{11} + \frac{-1}{10} + \frac{-9}{11} + \frac{-8}{11} + \frac{-7}{11} + \frac{-6}{11} + \frac{-5}{11} + \frac{4}{11} + \frac{-3}{11} + \frac{-2}{11} + \frac{-1}{11} + \frac{-1}{10} + \frac{-1}{11} + \frac{-1}{11$ 

 $\therefore \frac{1}{4} \times \frac{1}{1} = \frac{1}{4} \text{ and } \frac{1}{2} \times \frac{2}{2} = \frac{2}{4}$ Again  $\frac{1}{4} \times \frac{6}{6} = \frac{6}{24}$  and  $\frac{2}{4} \times \frac{6}{6} = \frac{12}{24}$  $\therefore$  Five rational numbers between  $\frac{1}{4}$  and  $\frac{1}{2}$  are  $\frac{7}{24}$ ,  $\frac{8}{24}$ ,  $\frac{9}{24}$ ,  $\frac{10}{24}$ ,  $\frac{11}{24}$ . 6. Write 5 rational numbers greater than -2. **Ans.** Five rational numbers greater than -2 are: [Other rational numbers are also possible] -1, 0, 1, 2, 3 Find ten rational numbers between  $\frac{3}{5}$  and  $\frac{3}{4}$ . 7. The given rational numbers are  $\frac{3}{5}$  and  $\frac{3}{4}$ Ans. L.C.M. of 5 and 4 is 20.  $\therefore \frac{3}{5} \times \frac{4}{4} = \frac{12}{20}$  and  $\frac{3}{4} \times \frac{5}{5} = \frac{15}{20}$ Again  $\frac{12}{20} \times \frac{4}{4} = \frac{48}{80}$  and  $\frac{15}{20} \times \frac{4}{4} = \frac{60}{80}$  $\therefore$  Ten rational numbers between  $\frac{3}{5}$  and  $\frac{3}{4}$  are:

 $\frac{49}{80}, \frac{50}{80}, \frac{51}{80}, \frac{52}{80}, \frac{53}{80}, \frac{54}{80}, \frac{55}{80}, \frac{56}{80}, \frac{57}{80}, \frac{58}{80}$ 

#### ADDITIONAL QUESTIONS AND ANSWERS

#### Choose the correct answer :-

1. A number which can be expressed as  $\frac{p}{q}$  where *p* and *q* are integers and  $q \neq 0$  is

- (a) natural number. (b) whole number. (c) integer. (d) rational number.
- Ans. (d) rational number.
- 2. The numerical expression  $\frac{3}{8} + \frac{(-5)}{7} = \frac{-19}{56}$  shows that
  - (a) rational numbers are closed under addition.
  - (b) rational numbers are not closed under addition.
  - (c) rational numbers are closed under multiplication.
  - (d) addition of rational numbers is not commutative.

**Ans.** (b) We have  $\frac{3}{8} + \frac{(-5)}{7} = \frac{-19}{56}$ .

It shows that rational numbers are closed under addition.

- $\left[\frac{3}{8}\right]$  and  $\frac{(-5)}{7}$  are rational number & their sum is  $\frac{-19}{56}$  which is also a rational number
- 3. Which of the following is not true?
  - (a) rational numbers are closed under addition.
  - (b) rational numbers are closed under subtraction.
  - (c) rational numbers are closed under multiplication.
  - (d) rational numbers are closed under division.
- Ans. (d) Rational numbers are not closed under division. As, 1 and 0 are the rational numbers but 1/0 is not defined.
- 4. Which of the following expressions shows that rational numbers are associative under multiplication.

| (a) $\frac{2}{3} \times \left(\frac{-6}{7} \times \frac{3}{5}\right) = \left(\frac{2}{3} \times \frac{-6}{7}\right) \times \frac{3}{5}$                                                        | (b) $\frac{2}{3} \times \left(\frac{-6}{7} \times \frac{3}{5}\right) = \left(\frac{2}{3} \times \frac{-6}{7}\right)$                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| (c) $\frac{2}{3} \times \left(\frac{-6}{7} \times \frac{3}{5}\right) = \left(\frac{3}{5} \times \frac{2}{3}\right) \times \frac{-6}{7}$<br>(a) $a \times (b \times c) = (a \times b) \times c$ | (d) $\left(\frac{2}{3} \times \frac{-6}{7}\right) \times \frac{3}{5} = \left(\frac{-6}{7} \times \frac{2}{3}\right) \times \frac{3}{5}$ |

**Ans.** (a) a × (p ×

Hence, the given expression shows that rational numbers are associative under multiplication.

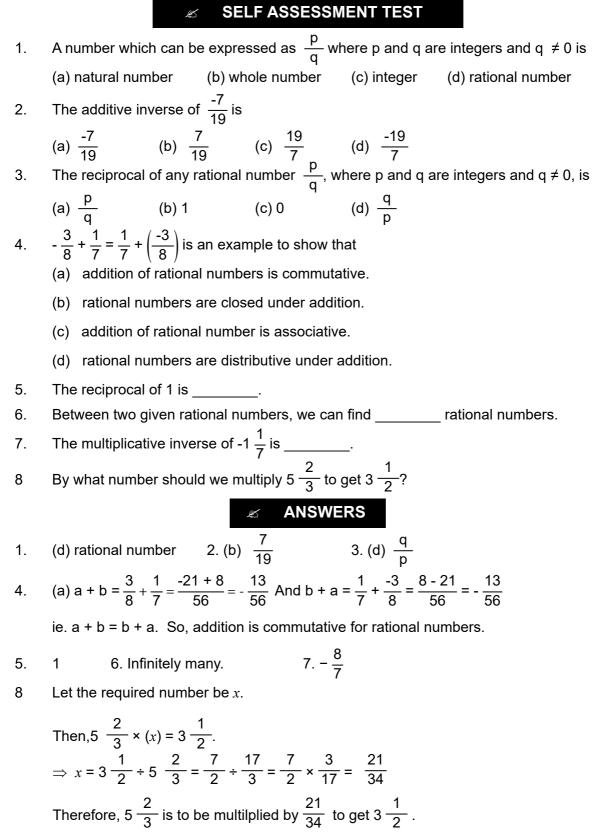
- 5. Zero (0) is
  - (a) the identity for addition of rational numbers.
  - (b) the identity for subtraction of rational numbers.
  - (c) the identity for multiplication of rational numbers.
  - (d) the identity for division of rational numbers.
- **Ans.** (a) Zero (0) is the identity for addition of rational numbers.

If *a* is a rational number. Then, a + 0 = 0 + a = a

- 6. One (1) is
  - (a) the identity for addition of rational numbers.
  - (b) the identity for subtraction of rational numbers.
  - (c) the identity for multiplication of rational numbers.
  - (d) the identity for division of rational numbers.
- **Ans.** (c) One (1) is the identity for multiplication of rational numbers.

If *a* is a rational number, then,  $a \ge 1 \ge a = a$ 

| 7.   | Multiplicative                                                  | inverse of a negative r                                                                                | ational            | number is                      |                |                   |
|------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------|--------------------------------|----------------|-------------------|
|      | (a) a positive                                                  | rational number.                                                                                       | (b) a              | a negative ration              | al nur         | mber.             |
|      | (c) 0                                                           |                                                                                                        | (d) 1              |                                |                |                   |
| Ans. | . (b) a negative                                                | rational number.                                                                                       |                    |                                |                |                   |
| 8.   | f x + 0 = 0 + x                                                 | x = x, which is a rationa                                                                              | al numb            | per, then 0 is call            | ed             |                   |
|      | (a) identity for                                                | addition of rational nu                                                                                | umbers.            | (b) additive ir                | vers           | e of x.           |
|      | (c) multiplicati                                                | ve inverse of x.                                                                                       |                    | (d) reciprocal                 | of <i>x</i> .  |                   |
| Ans. | . (a) identity for                                              | addition of rational nu                                                                                | mbers.             |                                |                |                   |
| 9.   | – (– <i>x</i> ) is same                                         | e as                                                                                                   |                    |                                |                |                   |
|      | (a) – <i>x</i>                                                  | (b) <i>x</i>                                                                                           | (c) -              | $\frac{1}{x}$                  | (d)            | $\frac{-1}{x}$    |
| Ans. | . (b) – (– $x$ ) = $x$                                          |                                                                                                        |                    |                                |                |                   |
|      | Negative of ne                                                  | egative rational numbe                                                                                 | er is equ          | ual to positive rat            | tional         | number.           |
| 10.  | The reciproca                                                   | l of –1 is                                                                                             |                    |                                |                |                   |
|      | (a) 1                                                           | (b) –1                                                                                                 | (c)                | 0                              | (d)            | Not defined       |
| Ans. | . (b) The recipro                                               | ocal of -1 is the numbe                                                                                | er itself.         |                                |                |                   |
| 11.  | The reciproca                                                   | l of 0 is                                                                                              |                    |                                |                |                   |
|      | (a) 1                                                           | (b) –1                                                                                                 | (c)                | 0                              | (d)            | Not defined       |
| Ans. | . (d) The recipr                                                | ocal of 0 is not defined                                                                               | d.                 |                                |                |                   |
| 12.  | If y be the rec                                                 | iprocal of rational num                                                                                | iber <i>x</i> , tl | hen the reciproc               | al of <u>y</u> | y will be         |
|      | (a) <i>x</i>                                                    | (b) y                                                                                                  | (a) -              | $\frac{x}{y}$                  | (d)            | $\frac{y}{x}$     |
| Ans. | . (a) <i>x</i>                                                  |                                                                                                        |                    |                                |                |                   |
| 13.  | The reciproca                                                   | l of $\frac{-3}{8} \times \left(\frac{-7}{13}\right)$ is                                               |                    |                                |                |                   |
|      | (a) <u>104</u><br>21                                            | (b) $\frac{-104}{21}$                                                                                  | (c) -              | 21<br>104                      | (d)            | <u>-21</u><br>104 |
| Ans. | . (a) $-\frac{3}{2} \times \left(\frac{-7}{4}\right)$           | $\left(\frac{7}{3}\right) = \frac{21}{104}$ . So, the mult                                             | tiplicativ         | ve inverse of $\frac{21}{100}$ | - is           | 04                |
| 14.  | - ( -                                                           | following is an example                                                                                |                    | -                              |                |                   |
|      | . (-                                                            | $+\left(\frac{-4}{7}\right) = \left[-\frac{1}{4} \times \frac{2}{3}\right] + \left $                   | • • •              | $\left[\frac{-4}{7}\right]$    |                |                   |
|      | (b) $-\frac{1}{4} \times \begin{cases} \frac{2}{3} \end{cases}$ | $+\left(\frac{-4}{7}\right) = \left[\frac{1}{4} \times \frac{2}{3}\right] - \left(\frac{-4}{7}\right)$ | <u>•</u> )         |                                |                |                   |
| TEA  | CHERS FORU                                                      | М                                                                                                      |                    |                                |                | -11-              |


•

|                                                                                                                                | (c) $-\frac{1}{4} \times \left\{ \frac{2}{3} + \left( \frac{-4}{7} \right) \right\} = \frac{2}{3} + \left( -\frac{1}{4} \right) \times \frac{-4}{7}$                                                                                                                                                                                                                                       |                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                | (d) $-\frac{1}{4} \times \left\{ \frac{2}{3} + \left( \frac{-4}{7} \right) \right\} = \left\{ \frac{2}{3} + \left( \frac{-4}{7} \right) \right\} - \frac{1}{4}$                                                                                                                                                                                                                            |                                                                                                                                  |
| Ans.                                                                                                                           | <ul> <li>(a) We know that, the distributive property numbers can be expressed as a x (b + c numbers.</li> </ul>                                                                                                                                                                                                                                                                            | of multiplication over addition for rational<br>c) = <i>ab</i> + <i>ac</i> , where <i>a</i> , <i>b</i> and <i>c</i> are rational |
| 15.                                                                                                                            | $\frac{x+y}{2}$ is a rational number                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
|                                                                                                                                | (a) Between $x$ and $y$ (b)                                                                                                                                                                                                                                                                                                                                                                | Less than x and y both.                                                                                                          |
|                                                                                                                                | (c) Greater than $x$ and $y$ both. (d)                                                                                                                                                                                                                                                                                                                                                     | Less than <i>x</i> but greater than <i>y</i> .                                                                                   |
| Ans.                                                                                                                           | s. (a) Between <i>x</i> and <i>y</i>                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
| 16.                                                                                                                            | A number of the form $\frac{p}{a}$ is said to be a rat                                                                                                                                                                                                                                                                                                                                     | ional number if                                                                                                                  |
|                                                                                                                                | (a) $p$ and $q$ are integers. (b)                                                                                                                                                                                                                                                                                                                                                          | $p$ and $q$ are integers and $q \neq 0$                                                                                          |
|                                                                                                                                | (c) $p$ and $q$ are integers and $p \neq 0$ (d)                                                                                                                                                                                                                                                                                                                                            | $p$ and $q$ are integers and $p \neq 0$ also $q \neq 0$ .                                                                        |
| Ans.                                                                                                                           | <b>s.</b> (b) $p$ and $q$ are integers and $q \neq 0$                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |
| II.                                                                                                                            | Fill in the blanks :-                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |
|                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |
| 17.                                                                                                                            | -7                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  |
| 17.                                                                                                                            | The additive inverse of $\frac{-7}{19}$ is<br><b>s</b> . $\frac{7}{19}$ . We know that, if <i>a</i> and <i>b</i> are the addit                                                                                                                                                                                                                                                             |                                                                                                                                  |
| 17.                                                                                                                            | The additive inverse of $\frac{-7}{19}$ is                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |
| 17.<br><b>Ans</b> .<br>18.                                                                                                     | The additive inverse of $\frac{-7}{19}$ is<br><b>s</b> . $\frac{7}{19}$ . We know that, if <i>a</i> and <i>b</i> are the addit<br>To get the product 1, we should multiply $\frac{4}{2}$<br><b>s</b> . $\frac{21}{8}$                                                                                                                                                                      | <sup>3</sup><br>1 by                                                                                                             |
| 17.<br><b>Ans</b> .<br>18.                                                                                                     | The additive inverse of $\frac{-7}{19}$ is<br><b>s</b> . $\frac{7}{19}$ . We know that, if <i>a</i> and <i>b</i> are the addit<br>To get the product 1, we should multiply $\frac{4}{2}$<br><b>s</b> . $\frac{21}{8}$                                                                                                                                                                      |                                                                                                                                  |
| 17.<br><b>Ans</b> .<br>18.<br><b>Ans</b> .                                                                                     | The additive inverse of $\frac{-7}{19}$ is<br><b>s</b> . $\frac{7}{19}$ . We know that, if <i>a</i> and <i>b</i> are the addit<br>To get the product 1, we should multiply $\frac{4}{2}$<br><b>s</b> . $\frac{21}{8}$<br>The reciprocal of any rational number $\frac{p}{q}$ , we                                                                                                          | <sup>3</sup><br>1 by                                                                                                             |
| <ul> <li>17.</li> <li>Ans.</li> <li>18.</li> <li>Ans.</li> <li>19.</li> <li>Ans.</li> </ul>                                    | The additive inverse of $\frac{-7}{19}$ is<br><b>s</b> . $\frac{7}{19}$ . We know that, if <i>a</i> and <i>b</i> are the addit<br>To get the product 1, we should multiply $\frac{4}{2}$<br><b>s</b> . $\frac{21}{8}$<br>The reciprocal of any rational number $\frac{p}{q}$ , we                                                                                                          | $\frac{3}{11}$ by                                                                                                                |
| <ul> <li>17.</li> <li>Ans.</li> <li>18.</li> <li>Ans.</li> <li>19.</li> <li>Ans.</li> <li>20.</li> </ul>                       | The additive inverse of $\frac{-7}{19}$ is<br><b>s</b> . $\frac{7}{19}$ . We know that, if <i>a</i> and <i>b</i> are the addit<br>To get the product 1, we should multiply $\frac{4}{2}$<br><b>s</b> . $\frac{21}{8}$<br>The reciprocal of any rational number $\frac{p}{q}$ , we<br><b>s</b> . $\frac{q}{p}$<br>The reciprocal of $\frac{2}{5} \times \left(\frac{-4}{9}\right)$ is       | $\frac{3}{11}$ by                                                                                                                |
| <ul> <li>17.</li> <li>Ans.</li> <li>18.</li> <li>Ans.</li> <li>19.</li> <li>Ans.</li> <li>20.</li> </ul>                       | The additive inverse of $\frac{-7}{19}$ is<br><b>s</b> . $\frac{7}{19}$ . We know that, if <i>a</i> and <i>b</i> are the addit<br>To get the product 1, we should multiply $\frac{4}{2}$<br><b>s</b> . $\frac{21}{8}$<br>The reciprocal of any rational number $\frac{p}{q}$ , <b>v</b><br><b>s</b> . $\frac{q}{p}$<br>The reciprocal of $\frac{2}{5} \times \left(\frac{-4}{9}\right)$ is | $\frac{3}{11}$ by                                                                                                                |
| <ul> <li>17.</li> <li>Ans.</li> <li>18.</li> <li>Ans.</li> <li>19.</li> <li>Ans.</li> <li>20.</li> <li>Ans.</li> </ul>         | The additive inverse of $\frac{-7}{19}$ is<br><b>s</b> . $\frac{7}{19}$ . We know that, if <i>a</i> and <i>b</i> are the addit<br>To get the product 1, we should multiply $\frac{4}{2}$<br><b>s</b> . $\frac{21}{8}$<br>The reciprocal of any rational number $\frac{p}{q}$ , we<br><b>s</b> . $\frac{q}{p}$<br>The reciprocal of $\frac{2}{5} \times \left(\frac{-4}{9}\right)$ is       | $\frac{3}{11}$ by                                                                                                                |
| <ul> <li>17.</li> <li><b>Ans</b>.</li> <li><b>Ans</b>.</li> <li><b>20</b>.</li> <li><b>Ans</b>.</li> <li><b>21</b>.</li> </ul> | The additive inverse of $\frac{-7}{19}$ is<br><b>s</b> . $\frac{7}{19}$ . We know that, if <i>a</i> and <i>b</i> are the addit<br>To get the product 1, we should multiply $\frac{4}{2}$<br><b>s</b> . $\frac{21}{8}$<br>The reciprocal of any rational number $\frac{p}{q}$ , we<br><b>s</b> . $\frac{q}{p}$<br>The reciprocal of $\frac{2}{5} \times \left(\frac{-4}{9}\right)$ is       | $\frac{3}{11}$ by                                                                                                                |

22. Verify the closure for the following additions.  $\frac{3}{11} + \frac{2}{33}$ 

Ans. 
$$\frac{3}{11} + \frac{2}{33} = \frac{(3 \times 3) + (2 \times 1)}{33} = \frac{9 + 2}{33} = \frac{11}{33}$$
.  
 $\frac{11}{33}$  is a rational number. Thus, closure property is verified.  
23. Verify the commutative property for the following additions  $\frac{5}{6} + \frac{8}{11}$   
Ans.  $\frac{5}{6} + \frac{8}{11} = \frac{(5 \times 11) + (8 \times 6)}{66} = \frac{55 + 48}{66} = \frac{103}{11}$   
Now,  $\frac{8}{11} + \frac{5}{6} = \frac{(8 \times 6) + (5 \times 11)}{66} = \frac{48 + 55}{66} = \frac{103}{11}$   
Thus,  $\frac{5}{6} + \frac{8}{11} = \frac{8}{11} + \frac{5}{6}$  So, commutative property is verified.  
24. Find the additive inverses of : (i)  $\frac{3}{8}$  (ii)  $\frac{4}{11}$  (iii) 0 (iv)  $\frac{-9}{13}$   
Ans. (i)  $\frac{-3}{8}$  (ii)  $\frac{4}{11}$  (iii) 0 (iv)  $\frac{-9}{13}$   
25. Verify the property  $x \times y = y \times x$  for the given values of x and  $y \cdot x = \frac{2}{3}, y = \frac{3}{7}$   
Ans. LHS :  $x \times y = \frac{2}{3} \times \frac{3}{7} = \frac{2}{7}$ ; RHS :  $y \times x = \frac{3}{7} \times \frac{2}{3} = \frac{2}{7}$ .  
LHS = RHS. Thus, verified.  
26. Write the additive inverse of each the following: (i)  $\frac{-7}{5}$  (ii)  $\frac{-3}{4}$   
Ans. (i) The additive inverse of  $\frac{-3}{-4} = (\frac{3}{4})$   
27. Find the multiplicative inverse of  $\frac{-3}{-4} = (\frac{3}{-4})$   
27. Find the multiplicative inverse of  $\frac{-3}{-5} \times \frac{8}{-3}$   
Ans.  $\frac{-6}{5} \times \frac{8}{-3} = \frac{(-6) \times 8}{5 \times (-3)} = \frac{-48}{-15} = \frac{16}{5}$ . The multiplicative inverse of  $\frac{16}{5} = \frac{5}{16}$ .  
28. Find the value of the following  
(i)  $\frac{4}{9} + \frac{-5}{9}$  (ii)  $2\frac{3}{7} + (4)$  (iii)  $\frac{-5}{-5} + \frac{7}{12}$   
Ans. (j)  $\frac{4}{9} + \frac{-5}{9} = \frac{4}{9} \times \frac{9}{-5} = \frac{4 \times 9}{9 \times (-5)} = \frac{-4}{5}$   
(ii)  $2\frac{3}{7} + (-4) = \frac{17}{7} \times \frac{4}{-4} = \frac{-17}{28}$ 

(iii)  $\frac{-5}{6} \div \frac{7}{12} = \frac{-5}{6} \times \frac{12}{7} = \frac{-10}{7}$ 



 $\diamond \diamond \diamond \diamond \diamond \diamond \diamond \diamond$