SELF ASSESSMENT TEST SOLUTIONS

1. (C)										
2. (B)										
3. (C)										
4. (D)										
5. (C)										
6.	$\frac{2\sqrt{45} + 3\sqrt{20}}{2\sqrt{5}}$	- - =	$\frac{2\sqrt{9 \times 5} + 3}{2\sqrt{5}}$	√4 x 5	-					
		=	$\frac{6\sqrt{5}+6\sqrt{5}}{2\sqrt{5}} =$	$=\frac{12\sqrt{5}}{2\sqrt{5}}$	= 6, w	/hich is	rational			
7.	144	=	2 ⁴ x 3 ²	2	144	2	96	2	54	
	96	=	2⁵ x 3	2	72	2	48	3	27	
	54	=	2 x 3 ³	2	36	2	24	3	9	
	0-1		2 × 0	2	18	2	12	° I		
	∴ HCF	=	2 x 3 = 6	3	9	2	6		3	
					3	-	3			

8. The fundamental theorem of Arithmetic : Every composite number can be expressed as product of primes and this factorisation is unique apart from the order in which the prime factors occur.

If 5^n were to end with digit 2, the prime factorisation of 5^n should contain the prime 2. But 5^n can be written only as $(1 \times 5)^n$ i.e., only 1 and 5 are its factors. Hence by the uniqueness of fundamental theorem of Arithmetic, 2 is not a factor of 5^n . So 5^n cannot end with digit 2 for any natural number n.

9. Let us assume that $3\sqrt{7}$ is a rational number.

$$\Rightarrow 3\sqrt{7} = \frac{a}{b}$$
, where a and b are co-primes.
$$\Rightarrow \sqrt{7} = \frac{a}{3b}$$

Since $\frac{a}{3b}$ is rational, $\sqrt{7}$ is also rational.

But we know that $\sqrt{7}$ is irrational and hence $3\sqrt{7}$ is also irrational.

10. Let us assume that $\sqrt{6} + \sqrt{2}$ is rational.

i.e., $\sqrt{6} + \sqrt{2} = \frac{p}{q}$, $q \neq 0$ where p and q are coprimes.

On squaring both sides, we have $(\sqrt{6} + \sqrt{2})^2 = (\frac{p}{q})^2$ $6 + 2 + 2\sqrt{6} \times \sqrt{2} = \frac{p^2}{q^2}$

Teachers Forum

SELF ASSESSMENT TEST SOLUTIONS

$$8 + 2\sqrt{12} = \frac{p^2}{q^2}$$

$$2\sqrt{12} = \frac{p^2}{q^2} - 8 = \frac{p^2 - 8q^2}{q^2}$$

$$\sqrt{12} = \frac{p^2 - 8q^2}{2q^2}$$
Since p and q are integers, $\frac{p^2 - 8q^2}{2q^2}$ is rational
$$\Rightarrow \sqrt{12}$$
 is rational.

But by the method of contradiction, we have $\sqrt{12}$ is irrational.

So our assumption is wrong and $\sqrt{6}$ + $\sqrt{2}$ is irrational