SELF ASSESSMENT TEST SOLUTIONS

1. Here, $\angle OAP = 90^{\circ}$ and $\angle AOP = 180^{\circ} - 115^{\circ} = 65^{\circ}$

Now $\angle APO = 180^{\circ} - (90^{\circ} + 65^{\circ}) = 25^{\circ}$

So (a) is the correct option.

2.

Here PA = PB = 14 cm

Also CA = CE and DB = DE

Now, perimeter of \triangle PCD = PC + CD + PD = PC + CE + ED + PD

= PC + CA + PD + DB

So (c) is the correct option.

3. Here $\triangle OBA \cong \triangle OCA$ [RHS congruence criterion]

So,
$$\angle OAB = \angle OAC = \frac{1}{2} \times 120^\circ = 60^\circ$$

In $\triangle OBA$, $\cos 60^\circ = \frac{AB}{OA}$
 $\frac{1}{2} = \frac{AB}{OA}$
 $OA = 2AB$

So (a) is the correct option.

4. Let radii of the circles with centres P, Q and R are p, q and r respectively.

Then, PQ = p - q = 10 ...(1) PR = p - r = 8 ...(2) and QR = q + r = 12 ...(3) $(2) + (3) \Rightarrow p + q = 20$...(4) $(1) + (4) \Rightarrow 2p = 30$

ie. diameter of the largest circle = 2p = 30 cm.

So (a) is the correct option.

Teachers Forum

By Pythagoras theorem, $AP^2 = AC^2 - PC^2 = 5^2 - 4^2 = 25 - 16 = 9$ $\Rightarrow \qquad AP = 3 \text{ cm}$ So, length of chord, $AB = 2AP = 2 \times 3 = 6 \text{ cm}$ So (b) is the correct option.

6. Join OC

Consider $\triangle APO$ and $\triangle ACO$

$$AP = AC \quad [tangents from A]$$

$$AO = AO \quad [common]$$

$$PO = CO \quad [radii of same circle]$$

$$\therefore \Delta APO \cong \Delta ACO \quad [SSS congruency]$$

$$\Rightarrow \angle PAO = \angle OAC \quad [CPCT]$$

$$\Rightarrow \angle OAB = \frac{1}{2} \angle PAB \quad \rightarrow(1)$$
Similarly we can prove that $\angle OBA = \frac{1}{2} \angle QBA \quad \rightarrow(2)$
Now $\angle PAB + \angle QBA = 180^{\circ}$ [sum of the interior angles on the same side of transversal is 180°]

$$\angle OAB + \angle OBA = \frac{180^{\circ}}{2}$$

$$\angle OAB + \angle OBA = 180^{\circ} \quad [From (1) \& (2)] \quad \rightarrow(3)$$
In $\triangle AOB$,

$$\angle OAB + \angle OBA = 180^{\circ} \quad [Angle sum property]$$

$$90^{\circ} + \angle AOB = 180^{\circ} \quad [From (3)]$$

$$\angle AOB = 90^{\circ}$$

× _____/

7. In \triangle PAO, \angle PAO = 90°

Teachers Forum

Y►

8.

$$AB = 2 \times BC = 8 \text{ cm}$$

 $OP = \sqrt{5^2 - 4^2} = \sqrt{9} = 3 \text{ cm}$

∴ Diameter = 6 cm

10.

9.

