1.

$$\pi r I = 2\pi r h$$
$$\frac{I}{h} = 2$$

So (a) is the correct option.

- 2. Here edge of cube, $a = \frac{20}{4}$ cm = 5 cm So surface area $6a^2 = 6 \times 5^2$ cm² = 150 cm² So (b) is the correct option.
- 3. Radius of the well $= \frac{7}{2}$ m = 3.5m Volume of the earth dug out $= \frac{22}{7} \times (3.5)^2 \times 20$ $= \frac{22}{7} \times 3.5 \times 3.5 \times 20 = 770$ m³ Area of platform $= (22 \times 14)$ m² = 308m² Height $= \frac{770}{308} = 2.5$ m

So (a) is the correct option.

4. Volume of the remaining solid

= Volume of the cylinder - Volume of the cone

=
$$\pi \times 6^2 \times 10 - \frac{1}{3} \times \pi \times 6^2 \times 10$$

= (360 π - 120 π) = 240 π cm³

So (a) is the correct option.

$$\frac{V_1}{V_2} = \frac{64}{27}$$
$$\frac{4/3 \pi r_1^3}{4/3 \pi r_2^3} = \frac{64}{27}$$
$$\frac{r_1^3}{r_2^3} = \frac{64}{27}$$
$$\Rightarrow \frac{r_1}{r_2^3} = \frac{64}{27}$$
$$\Rightarrow \frac{r_1}{r_2} = \frac{4}{3}$$

Now, ratio of their surface areas = $\frac{4 \pi r_1^2}{4 \pi r_2^2} = \frac{r_1^2}{r_2^2} = \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ So (d) is the correct option.

6. Here diameter of sphere = Radius of hemisphere = 6 cm

Radius of sphere = 3 cm

Volume, V $= \frac{4}{3} \pi r^3$ Teachers Forum

-1-

$$= \frac{4}{3} \times \frac{22}{7} \times 3^3 \,\mathrm{cm}^3 = 113.14 \,\mathrm{cm}^3.$$

7. Here diameter of hemisphere is equal to the side of cubical block which is 7 cm.Diameter of hemisphere = Side of cubical block

$$2r = 7 \Rightarrow r = \frac{7}{2}$$

Surface area of solid = Surface area of the cube - Area of base of hemisphere

+ curved surface area of hemisphere

$$= 6a^2 - \pi r^2 + 2\pi r^2 = 6l^2 + \pi r^2$$

$$= 6 \times 7^{2} + \frac{22}{7} \times \left(\frac{7}{2}\right)^{2}$$
$$= 6 \times 49 + \frac{77}{2} = 332.5 \text{ m}^{2}$$

8. Given, r = 7 m and h = 24 m

Slant height of tent, $l = \sqrt{r^2 + h^2} = \sqrt{7^2 + 24^2} = \sqrt{625} = 25 \text{ m}$

CSA of cone, $\pi r l = \frac{22}{7} \times 7 \times 25 = 550 \text{m}^2$

Let *x* meter of cloth is required then, $5x = 550 \Rightarrow x = \frac{550}{5} = 110$ m. So 110 m of cloth is required.

$$\therefore$$
 Cost of cloth = 25 × 110 = Rs.2750.

9. Let h be the rainfall.

Volume of water collected in cylindrical vessel,

$$\frac{4}{5} \pi r^2 h = \frac{4}{5} \times \pi \times (1)^3 \times \left(\frac{7}{2}\right) = \frac{44}{5} m^3$$

Volume of rain water from roof = $22 \times 20 \times h m^3$.

Now
$$22 \times 20 \times h = \frac{44}{5}$$

 $h = \frac{44}{5} \times \frac{1}{22 \times 20} = \frac{1}{50}$ m.
 $= \frac{1}{50} \times 100 = 2$ cm
10. Radius of earth dug out, $r = \frac{4}{2} = 2m$
Depth of the earth, $h = 21$,

Depth of the earth,
$$h = 21$$
,
Volume of earth, $\pi r^2 h = \frac{22}{7} \times (2)^2 \times 21$
 $= 22 \times 4 \times 3 = 264 m^3$

Width of embankment = 3 m

Teachers Forum

Outer radius of ring = 2 + 3 = 5 m

Let the height of embankment be h.

ATQ, Volume of embankment = Volume of earth

$$\pi (R^2 - r^2)h = 264$$

$$\frac{22}{7} \times (5^2 - 2^2) \times h = 264$$

$$\frac{22}{7} \times (25 - 4) \times h = 264$$

$$\frac{22}{7} \times 21 \times h = 264$$

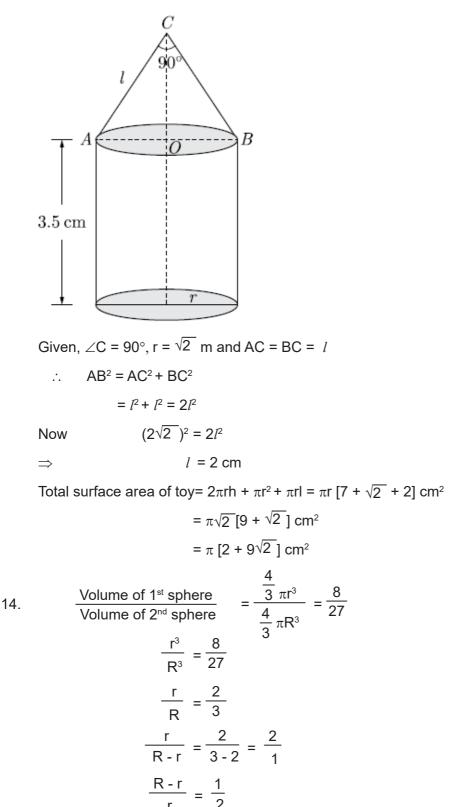
$$\Rightarrow h = \frac{264 \times 7}{22 \times 21} = 4$$

ie. the height of embankment is 4 m.

11. Volume of hemispherical tank,
$$V = \frac{2}{3}\pi r^3 = \frac{2}{3}\pi \left(\frac{3}{2}\right)^3 m^3$$

= $\frac{2}{3} \times \frac{22}{7} \times \frac{27}{8} m^3 = \frac{99}{14} m^3$
 $V = \frac{99}{14} \times 1000 \text{ litre} [1 m^3 = 1000 \text{ litre}]$

Volume of half of the hemisphere = $\frac{1}{2} \times \frac{99}{14} \times 1000$ Litres Let time taken for this volume to flow out be t. Then according to question,


$$3\frac{4}{7}t = \frac{1}{2} \times \frac{99}{14} \times 1000$$
$$\frac{25t}{7} = \frac{1}{2} \times \frac{99}{14} \times 1000$$
$$t = \frac{7}{25} \times \frac{1}{2} \times \frac{99}{14} \times 1000$$

= 990 sec = 16 minutes 30 sec.

12. Volume of coin =
$$\pi (0.75)^2 \times 0.2 \text{ cm}^3$$

Volume of cylinder = $\pi (2.25)^2 \times 10 \text{ cm}^3$
No. of coins = $\frac{\text{Volume of cylinder}}{\text{Volume of coin}}$
= $\frac{\pi (2.25)^2 \times 10}{\pi (0.75)^2 \times 0.2} = \frac{(3)^2 \times 10}{0.2} = 450$

13.

Teachers Forum

15. Let r be the internal radius of the pipe.

Speed of water flowing through the pipe Teachers Forum

= 2.52 km/hr = 2520 m/hr

In an hour length of water = 2520 m

Volume of water flowing from pipe in 1 hr = π r²h = π r² × 2520 m³

In 0.5 hour,

Volume of water flown = Volume of water in tank

$$\pi r^{2} \times 2520 \times 0.5 = \pi \times (0.4)^{2} \times 3.15$$

$$1260r^{2} = 0.4 \times 0.4 \times 3.15$$

$$400r^{2} = 0.4 \times 0.4$$

$$20r = 0.4 \Rightarrow r = \frac{0.4}{20} = 0.02 \text{ m}$$

So the diameter of pipe is 4 cm.