TEACHERS FORUM[®]

QUESTION BANK (solved)

Based on CBSE Previous years' question papers

Class XII

MATHEMATICS

SUBJECT EXPERTS

1.	RELATIONS AND FUNCTIONS	005 - 025
2.	INVERSE TRIGONOMETRIC FUNCTIONS	026 - 040
3.	MATRICES	041 - 062
4.	DETERMINANTS	063 - 099
5.	CONTINUITY AND DIFFERENTIABILITY	100 - 124
6.	APPLICATION OF DERIVATIVES	125 - 153
7.	INTEGRALS	154 - 202
8.	APPLICATION OF INTEGRALS	203 - 234
9.	DIFFERENTIAL EQUATIONS	235 - 254
10.	VECTOR ALGEBRA	255 - 292
11.	THREE DIMENSIONAL GEOMETRY	293 - 288
12.	LINEAR PROGRAMMING	289 - 316
13.	PROBABILITY	317 - 344

RELATIONS AND FUNCTIONS

1 MARKS

1. A relation in a set A is called ______ relation, if each element of A is related to itself. (2020)

Ans. reflexive

- 2. The least value of the function $f(x) = ax + \frac{b}{x} (a > 0, b > 0, x > 0)$ is _____. (2020)
- Ans. Here $f(x) = ax + \frac{b}{x}; a > 0, b > 0, x > 0$ $\therefore f'(x) = a - \frac{b}{x^2} \text{ and } f''(x) = \frac{2b}{x^3}$

For critical points, $f'(x) = a - \frac{b}{r^2} = 0 \implies x = \sqrt{\frac{b}{r}}$

As
$$f''(x)$$
 $\left(\sqrt{\frac{b}{a}}\right) = \frac{2b}{\frac{b^{3/2}}{a^{3/2}}} = \frac{2a^{3/2}}{\sqrt{b}} > 0$ so, $f(x)$ has least value at $x = \sqrt{\frac{b}{a}}$

Also, the least value of functions $f\left(\sqrt{\frac{b}{a}}\right) = a\sqrt{\frac{b}{a}} + \frac{b}{\sqrt{\frac{b}{a}}} = \sqrt{ab} + \sqrt{ab} = 2\sqrt{ab}$ 3. If $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = (3 - x^3)^{1/3}$, find for $(x) \cdot \sqrt{\frac{b}{a}}$ (2019)

Ans.

 $fof(x) = f(f(x)) = f((3 - x^3)^{1/3})$

$$= [3 - {(3 - x^3)^{1/3}}^3]^{1/3} = x$$

4. If a * b denotes the larger of 'a' and 'b' and if a o b = (a * b) + 3, then write the value of (5) o (10), where * and o are binary operations. (2018)

Ans. 5 o 10 = (5 * 10) + 3 = 10 + 3 = 13

- 5. Find the identity element in the set Q⁺ of all positive rational numbers for the operation * defined by a * b = $\frac{3ab}{2}$ for all a, b \in Q₊. (2018) Ans. $\frac{3ae}{2}$ = a, e = $\frac{2}{3}$
- 6. Let * be a 'binary' operation on N given by a * b = LCM (a, b) for all a, b \in N. Find 5 * 7. (2012)

Ans. 35

7. The binary operation *: R x R \rightarrow R is defined as a * b = 2a + b. Find (2 * 3) * 4.

Ans. 18

TEACHERS FORUM

(2012)

8. State the reason for the relation R in the set {1, 2, 3} given by R= {(I, 2), (2, 1)} not to be transitive.
 (2011)

Ans. $(1, 2) \in R$, $(2, 1) \in R$ but $(1, 1) \notin R$

- 9. Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. State whether *f* is one-one or not. (2011)
- **Ans.** f is a one-one function
- 10. If the binary operation * on the set of integers Z, is defined by a * b = a + 3b², then find the value of 2 * 4.
 (2009)

Ans. 50

11. Let* be a binary operation on N given by a * b = HCF (a, b), a, b ∈ N.
 Write the value of 22*4.

Ans. 2

12. If f(x) = x + 7 and g(x) = x - 7, $x \in \mathbb{R}$, find (fog) (7) (2008)

Ans. 7

13. Let * be a binary operation defined by a * b = 2a + b - 3. Find 3 * 4. (2008)

Ans. 3* 4 = 2 × 3 + 4 - 3 = 7

2 MARKS

14. If $f(x) = \frac{4x+3}{6x-4}, x \neq \frac{2}{3}$, then show that (fof)(x) = x, for all $x \neq \frac{2}{3}$. Also write inverse of f. Ans. Given $f(x) = \frac{4x+3}{6x-4}, x \neq \frac{2}{3}$,
(2020) $fof(x) = f(f(x)) = f(\frac{4x+3}{6x-4}) = \frac{4(\frac{4x+3}{6x-4}) + 3}{6(\frac{4x+3}{6x-4}) - 4}$ $= \frac{4(\frac{4x+3}{6x-4}) + 3}{6(\frac{4x+3}{6x-4}) - 4} = \frac{16x+12+18x-12}{24x+18-24x+16} = \frac{34x}{34} = x$. Let $y = f(x) = \frac{4x+3}{6x-4}$ $\Rightarrow \quad 6xy - 4y = 4x + 3$ $\Rightarrow \quad 6xy - 4x = 3 + 4y$ $\Rightarrow \quad x = \frac{3+4y}{6y-4}$ i.e., $f^{-1}(x) = \frac{3+4x}{6x-4}, x \neq \frac{2}{3}$

15. Check if the relation R in the set R of real numbers defined as $R = \{(a, b) : a < b\}$ is

(2009)

(i) symmetric, (ii) transitive

Ans. We have $R = \{(a, b) : a < b\}$ where $a, b \in R$.

(i) Symmetry : Observe that 1 < 2 is true but 2 < 1 is not true.

That is, $(1,2) \notin R$ but $(2,1) \in R$ so, R is not symmetric.

(ii) Transitivity : Observe that if a < b and b < c are both true then, a < c is also true, for all real numbers a, b, c.

That is, $(a, b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R$ So, R is transitive.

- 16. Let A = N X N be the set of all ordered pairs of natural numbers and R be the relation on the set A defined by (a, b) R (c, d) if ad = bc. Show that R is an equivalence relation.
- **Ans.** For reflexive :
 - As ab = ba

 \Rightarrow (a, b) R(a, b) \therefore R is reflexive

For symmetric:

Let (a, b,) R (c, d)

 \Rightarrow ad = bc

 \Rightarrow cb = da

 \Rightarrow (c, d) R(a, b) \therefore R is symmetric

For transitive:

Let a, b, c, d, e, $f \in N$

Let (a, b) R(c, d) and (c, d) R(e, f)

⇒ ad = bc and cf = de ⇒ d = $\frac{cf}{e}$ ∴ a $\left(\frac{cf}{e}\right)$ = bc acf = bce ⇒ af = be

 \Rightarrow (a, b) R(e, f) \therefore R is transitive

Since R is reflexive, symmetric and transitive ... R is an equivalence relation.

17. Show that $f: R - \{2\} \rightarrow R - \{1\}$ defined by $f(x) = \frac{x}{x-2}$ is one-one. Also, if $g: R - \{1\} \rightarrow R - \{2\}$ is defined as $g(x) = \frac{2x}{x-1}$, find gof (x). (2019)

Ans. Let $x_1, x_2 \in \mathsf{R} - \{2\}$

Let
$$f(x_1) = f(x_2)$$

 $\frac{x_1}{x_1 - 2} = \frac{x_2}{x_2 - 2} \Rightarrow x_1(x_2 - 2) = x_2(x_1 - 2)$

TEACHERS FORUM

(2020)

(2019)

$$\Rightarrow x_1 = x_2$$

 \Rightarrow f is one-one.

Now,
$$gof(x) = g(f(x)), x \in R - \{2\}$$

= $g\left(\frac{x}{x-2}\right) = \frac{2\left(\frac{x}{x-2}\right)}{\frac{x}{x-2} - 1} = x$

- 18. Prove that the relation R in R, the set of all real numbers, defined as R = {(a, b) : $a \le b^2$ } is neither reflexive nor transitive. (2019)
- **Ans.** 0.1 ∈ R with 0.1 \leq (0.1)² ... (0.1, 0.1) \notin R

:. R is not reflexive

10, 4, 3 \in R with 10 \leq 4², 4 \leq 3² but 10 \nleq 3²

 \therefore (10, 4), (4, 3) \in R but (10, 3) \in R \therefore R is not transitive

19. Consider f : + R₊ \rightarrow [4, ∞] given by $f(x) = x^2$ + 4. Show that *f* is invertible with inverse of *f* given by $f^{-1}(y) = \sqrt{y} - 4$, where R₊ is the set of all non-negative real numbers. (2019)

Ans. Let $x_1, x_2 \in \mathsf{R}_+$

Such that
$$f(x_1) = f(x_2) \Rightarrow x_1^2 + 4 = x_2^2 + 4 \Rightarrow x_1^2 = x_2^2 \Rightarrow x_1 = x_2$$

 \therefore *f* is a one-one function.

Now, $x^2 \ge 0 \Longrightarrow x^2 + 4 \ge 4 \Longrightarrow f(x) \in [4, \infty)$

 \Rightarrow R_f = [4, ∞) = Co-domain (*f*) \therefore *f* is an onto function.

 \therefore *f* is an invertible function.

$$y = 2f(x) = x + 4 \Longrightarrow x = \sqrt{y - 4} = f^{-1}(y) = \sqrt{y - 4}$$

20. Prove that if E and F are independent events, then the events E and F' are also independent. (2017)

$$P(E \cap F^{I}) = P(E) - P(E \cap F)$$
$$= P(E) - P(E) \cdot P(F)$$
$$= P(E)[1 - P(F)]$$
$$= P(E)P(F^{I})$$

 \Rightarrow E and F^I are independent events.

- 21. Show that the relation R defined by (a, b) R (c, d) \Rightarrow a + d = b + c on the set N × N is an equivalence relation. (2008)
- **Ans.** (i) (a, b) R (c, d) \Rightarrow a+d = b+c

where (a, b), (c, d) $\in N \times N$

Ans.

(a, b) R (a, b) \Rightarrow a + b = b + a \Rightarrow True

R is Reflexive

(ii) (a, b) R (c, d) \Rightarrow a + d = b + c \Rightarrow b + c = a + d

= c + b = d + a

 \Rightarrow (c, d) R (a, b)

Hence R is Symmetric

(iii) Let (a, b) R (c, d) and (c, d) R (e, f)

 \Rightarrow a + d = b + c and c + f = d + e

Adding we get

a + d + c + f = b + c + d + e

 \Rightarrow a + f = b + e \Rightarrow (a, b) R (e, f)

- ∴ R is transitive
- ∴ R is an equivalence relation

3 MARKS

22. Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9} by R = { $(x, y) : x, y \in A, x \text{ and } y \text{ are either both odd or both even}$ }. Show that R is an equivalence relation. Write all the equivalence classes of set A. (2018)

Ans. Reflexive : Clearly $(x, x) \in \mathbb{R} : x$ is either odd or even. So \mathbb{R} is reflexive

Symmetric

Let $(x, y) \in R$

- \therefore *x*, y are both either odd or even
- \Rightarrow y, x are both either odd or even

 \Rightarrow (y, x) \in R, So R is symmetric

Transitive

Let $(x, y) \in R$ and $(y, z) \in R$

Case (i) x and y are both odd so y and z are both odd

 $\therefore x$ and z are both odd

$$\therefore$$
 (x, z) \in R

Case (ii) x and y are both even, so y and z are both even

 \therefore *x* and z are both even

 \therefore (x, z) \in R

Thus (x, y) and $(y, z) \in R \Rightarrow (x, z) \in R$

R is transitive

As R is reflexive, symmetric and transitive so R is an equivalence relation.

 $[1] = \{1, 3, 5, 7, 9\}$

[2] = {2, 4, 6, 8} are required equivalence classes

23. Let A be the set of all real numbers except -1 and let * be a binary operation on A defined by a * b = a + b + ab, for ∀ a, b ∈ A. Prove that (i) * is commutative and associative, and (ii) number 0 is its identity element. (2018)

Ans.

a * b = a + b + ab b * a = b + a + ba $a * b = b * a \forall a, b \in A$

So * is commutative

a * (b * c)	=	a * (b + c + bc) = a + b + c + bc + ab + ac + abc
(a * b) * c	=	(a + b + ab) * c = a + b + ab + c + ac + bc + abc
a * (b * c)	=	$(a * b) * c \forall a, b, c \in A$

∴ * is associative

a * 0 = a + 0 + a . 0 = a 0 * a = 0 + a + 0 . a = a

and $0 \in A \therefore 0$ is the identity element

24. Show that the relation R on the set Z of all integers defined by $(x, y) \in R \Leftrightarrow (x - y)$ is divisible by 3 is an equivalence relation. (2018)

Ans. (x - x) = 0 is divisible by 3 for all $x \in z$. So, $(x, x) \in R$

∴ R is reflexive.

(x - y) is divisible by $3 \Rightarrow (y - x)$ is divisible by 3.

So (x, y) Î R \Rightarrow $(y, x) \in$ R, x, y \in z

 \Rightarrow R is symmetric.

(x - y) is divisible by 3 and (y - z) is divisible by 3.

So (x - z) = (x - y) + (y - z) is divisible by 3.

Hence $(x, z) \in R \Rightarrow R$ is transitive

 \Rightarrow R is an equivalence relation

25. Show that zero is the identity for this operation * and each element 'a' \neq 0 of the set is invertible with 6 – a, being the inverse of 'a'. (2018)

Ans.

*	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

 $a*0 \ = \ a+0 = a \ \forall \ a \in A \Longrightarrow 0 \ \text{is the identifty for } *.$

Let b =
$$6 - a$$
 for $a \neq 0$
Since $a + b = a + 6 - a < 6$
 $\Rightarrow a * b = b * a = a + 6 - a - 6 = 0$
Hence b = $6 - a$ is the inverse of a.

26. Consider f : \mathbf{R} + \rightarrow [- 9, ∞] given by f(x) = 5x² + 6x - 9. Prove that f is invertible with

$$f^{1}(y) = \left(\frac{\sqrt{54+5y}-3}{5}\right).$$
(2017)
Ans. $f: \mathbb{R}_{+} \to [-9, \infty); f(x) = 5x^{2} + 6x - 9; f^{1}(y) = \frac{\sqrt{54+5y}-3}{5}$
 $fof^{1}(y) = 5\left\{\frac{\sqrt{54+5y}-3}{5}\right\}^{2} + 6\left\{\frac{\sqrt{54+5y}-3}{5}\right\} - 9 = y$
 $f^{1} of(x) = \frac{\sqrt{54+5(5x^{2}+6x-9)}-3}{5} = x$
Hence 'f' is invertible with $f^{1}(y) = \frac{\sqrt{54+5y}-3}{5}$

27. A binary operation * is defined on the set $x = R - \{-1\}$ by

 $x * y = x + y + xy, \forall x, y \in X.$

Check whether * is commutative and associative. Find its identity element and also find the inverse of each element of X. (2017)

Ans. (i) commutative : let $x, y \in \mathbb{R} - \{-1\}$ then

$$x * y = x + y + xy = y + x + yx = y * x$$

.:. * is commutative

(ii) Associative : let $x, y, z \in \mathbb{R} - \{-1\}$ then

$$x^{*} (y^{*} z) = x^{*} (y + z + yz) = x + (y + z + yz) + x (y + z + yz)$$
$$= x + y + z + xy + yz + zx + xyz$$

$$(x * y) * z = (x + y + xy) * z = (x + y + xy) + z + (x + y + xy) . z$$
$$= x + y + z + xy + yz + zx + xyz$$
$$x * (y * z) = (x * y) * z$$

∴ * is Associative

(iii) Identity Element : let
$$e \in R - \{-1\}$$
 such that a * e = e * a = a $\forall a \in R - \{-1\}$

∴ a + e + ae = a

$$\Rightarrow$$
 e = 0

(iv) Inverse : let a * b = b * a = e = 0 ; a, b \in R - \{-1\}

 $\Rightarrow a + b + ab = 0$ $\therefore b = \frac{-a}{1+a} \text{ or } a^{-1} = \frac{-a}{1+a}$

28. Let $f: \mathbb{N} \to \mathbb{N}$ be a function defined as $f(x) = 9x^2 + 6x - 5$. Show that $f: \mathbb{N} \to \mathbb{S}$, where S is the range of f, is invertible. Find the inverse of f and hence find $f^{-1}(43)$ and f^{-1} (163). (2016)

Ans. Let
$$x_1, x_2 \in \mathbb{N}$$
 and $f(x_1) = f(x_2)$
 $\Rightarrow 9x_1^2 + 6x_1 - 5 = 9x_2^2 + 6x_2 - 5$
 $\Rightarrow (x_1 - x_2)(9x_1 + 9x_2 + 6) = 0$
 $\Rightarrow x_1 - x_2 = 0$
or $x_1 = x_2 \text{ as } (9x_1 + 9x_2 + 6) \neq 0, x_1, x_2 \in \mathbb{N}$

 \therefore *f* is a one-one function

 $f: \mathbb{N} \to \mathbb{S}$ is ONTO as co-domain = Range

Hence f is invertible

$$y = 9x^{2} + 6x - 5 = (3x + 1)^{2} - 6 \Rightarrow x = \frac{\sqrt{y + 6} - 1}{3}$$
$$f^{-1}(y) = \frac{\sqrt{y + 6} - 1}{3}, y \in S$$
$$f^{-1}(43) = \frac{\sqrt{49} - 1}{3} = 2$$
$$f^{-1}(163) = \frac{\sqrt{169} - 1}{3} = 4$$

29. If f, g : R \rightarrow R be two functions defined as f(x) = |x| + x and g(x) = |x| - x, $\forall x \in \mathbb{R}$.

Then find fog and gof. Hence find fog(-3), fog(5) and gof(-2). (2016)

Ans.
$$f(x) = |x| + x$$
 and $g(x) = |x| - x$, $\forall x \in \mathbb{R}$
(fog) $(x) = f(g(x))$
 $= ||x| - x | + |x| - x$

(gof) (x) = g(f(x))= ||x| + x| - |x| - x(fog) (-3) = 6 (fog) (5) = 0 (gof) (-2) = 2

30. Determine whether the relation R defined on the set of all real R numbers as $R = \{(a, b) : a, b \in R \text{ and } a - b + \sqrt{3} \in S, \text{ where S is the set of all irrational numbers}\}$, is reflexive, symmetric and transitive. (2015)

Ans. Here R = { (a, b) : a, b $\in \Re$ and a - b + $\sqrt{3} \in S$, where

S is the set of all irrational numbers.}

- (i) \forall a ∈ ℜ, (a, a) ∈ R as a a + $\sqrt{3}$ is irrational ∴ R is reflexive
- (ii) Let for a, $b \in \Re$, (a, b) $\in \mathbb{R}$ i. e., a b + $\sqrt{3}$ is irrational a - b + $\sqrt{3}$ is irrational \Rightarrow b - a + $\sqrt{3} \in \mathbb{S}$ \therefore (b, a) $\in \mathbb{R}$

Hence R is symmetric

(iii) Let $(a, b) \in R$ and $(b, c) \in R$, for $a, b, c \in \Re$

a - b + $\sqrt{3} \in S$ and b - c + $\sqrt{3} \in S$

adding to get a - c + 2 $\sqrt{3} \in S$ Hence (a, c) $\in R$

:. R is Transitive

- 31. Let A = R x R and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Prove that * is commutative and associative. Find the identity element for * on A. Also write the inverse element of the element (3, -5) in A. (2015)
- Ans. \forall a, b, c, d, e, f \in R

$$((a, b) * (c, d) * (e, f) = (a + c, b + d) * (e, f)$$

= (a + c + e, b + d + f) \rightarrow (3)
(a, b) * ((c, d) * (e, f)) = (a, b) * (c + e, d + f)
= (a + c + e, b + d + f) \rightarrow (4)

* is Associative

Let (x, y) be on identity element in $R \times R$

$$\Rightarrow (a, b) * (x, y) = (a, b) = (x, y) * (a, b)$$
$$\Rightarrow a + x = a, b + y = b$$
$$x = 0, y = 0$$

TEACHERS FORUM

\therefore (0, 0) is identity element

Let the inverse element of (3, -5) be (x_1, y_1)

$$\Rightarrow (3, -5) * (x_1, y_1) = (0, 0) = (x_1, y_1) * (3, -5)$$

$$3 + x_1 = 0, -5 + y_1 = 0$$

$$\Rightarrow x_1 = -3, y_1 = 5$$

 \Rightarrow (-3, 5) is an inverse of (3, -5)

32. If
$$f(x) = \sqrt{x^2 + 1}$$
; $g(x) = \frac{x - 1}{x^2 + 1}$ and $h(x) = 2x - 3$, then find $f'[h'\{g'(x)\}]$. (2015)
Ans. $f(x) = \sqrt{x^2 + 1} g(x) = \frac{x - 1}{x^2 + 1}$, $h(x) = 2x - 3$

$$f(x) = \sqrt{x^2 + 1} g(x) = \frac{x - 1}{x^2 + 1}, h(x) = 2x - 3$$

Differentiating w.r.t. "x", we get

$$f'(x) = \frac{x}{\sqrt{x^2 + 1}}, g'(x) = \frac{1 - 2x - x^2}{(x^2 + 1)^2}, h'(x) = 2$$
$$f'(h'(g'(x))) = \frac{2}{\sqrt{5}}$$

33. Show that $f: \mathbb{N} \to \mathbb{N}$, given by

> f(x) $\begin{cases} x + 1, \text{ if } x \text{ is odd} \\ x - 1, \text{ if } x \text{ is even} \end{cases}$ is both one-one and onto. (2012)

Ans. Let x_1 be odd and x_2 be even and suppose $f(x_1) = f(x_2)$

 \Rightarrow x₁ + 1 = x₂ - 1 \Rightarrow x₂ - x₁ = 2 which is not possible

similarly, if x_2 is odd and x_1 is even, not possible to have $f(x_1) = f(x_2)$

Let x_1 and x_2 be both odd $\Rightarrow f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

similarly, if x_1 and x_2 are both even, then also $x_1 = x_2$

 \therefore f is one – one

Also, any odd number 2r + 1 in co-domain N is the image of (2r + 2) in domain N and any even number 2r in the co-domain N is the image of (2r - 1) in domain N \Rightarrow *f* is on to

Consider the binary operations * : R × R \rightarrow R and o : R × R \rightarrow R defined as a * b = 34. |a - b| and a o b = a for all a, b \in R. Show that ' * ' is commutative but not associative, 'o' is associative but not commutative. (2012)

Ans. a * b = |a - b| and b * a = |b - a|. also |a - b| = |b - a| for all $a, b \in \mathbb{R}$

 \therefore a * b = b * a \Rightarrow * is commutative

Also, [(-2) * 3] * 4 = | -2 - 3 | * 4 = 5 * 4 = | 5 - 4 | = 1

and
$$(-2) * [3 * 4] = (-2) * |3 - 4| = -2 * 1 = |-2 - 1| = 3$$

∴ * is not associative

2o3 = 2 and $3o2 = 3 \Rightarrow o$ is not commutative

for any a, b, $c \in R$ (a o b) oc = a o c = a and ao (boc) = a o b = a

 \Rightarrow o is a associative

35. Consider the binary operation * on the set {1, 2, 3, 4, 5} defined by a * b = min. {a, b}.
Write the operation table of the operation *.

Ans.	a * b	1	2	3	4	5
	1	1	1	1	1	1
	2	1	2	2	2	2
	3	1	2	3	3	3
	4	1	2	3	4	4
	5	1	2	3	4	5

- 36. Let $f : \mathbb{R} \to \mathbb{R}$ be defined as f(x) = 10x + 7. Find the function $g : \mathbb{R} \to \mathbb{R}$ such that gof = fog = $I_{\mathbb{R}}$. (2011)
- Ans.

Let
$$y = 10x + 7$$

$$\therefore x = \frac{1}{10} (y - 7)$$

$$\det g(y) = \frac{1}{10} (y - 7)$$

$$\therefore gof(x) = g(10x + 7) = \frac{1}{10} (10x + 7 - 7) = x \Rightarrow I_{R} = gof$$

and fog(y) = $f(\frac{1}{10} (y - 7)) = 10 (\frac{1}{10} (y - 7)) + 7 = y \Rightarrow I_{R} = fog$

$$\operatorname{Hence} g(y) = \frac{1}{10} (y - 7)$$

37. A binary operation * on the set {0, 1, 2, 3, 4, 5} is defined as : (2011)

$$a * b = \begin{cases} a + b, & \text{if } a + b < 6 \\ a + b - 6, & \text{if } a + b \ge 6 \end{cases}$$

Show that zero is the identity for this operation and each element 'a' of the set is, invertible with 6 - a, being the inverse of 'a'.

Ans. since
$$a * 0 = a + 0 = a$$

and $0 * a = 0 + a = a$ $\forall a \in \{0, 1, 2, 3, 4, 5\}$

 \therefore 0 is the identity for *.

Also, $\forall a \in \{0, 1, 2, 3, 4, 5\}$, a * (6 - a) = a + (6 - a) - 6 = 0 (which is identity)

- \therefore Each element 'a' of the set is invertible with (6 a), being the inverse of 'a'.
- 38. Prove that the relation R in the set A = $\{1, 2, 3, 4,5\}$ given by R = $\{(a, b) : | a b | is even\}$, is an equivalence relation. (2009)

TEACHERS FORUM

Ans. (i) for all $a \in A$, $(a, a) \in R$ \therefore |a - a| = o is even

- :. R is reflexive in A
- (ii) for all a, b \in A, (a,b) \in R \Rightarrow (b, a) \in R
- :. if |a b| is even then |b a| is also even \Rightarrow R is symmetric in A.
- (iii) for all a,b, $c \in A$

 $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$

 \therefore | a – b | is even, | b – c | is even, then | a – c | will also be even

Hence, R is an equivalence relation in A

4 MARKS

39. Let A = R – {1}. If $f: A \rightarrow A$ is a mapping defined by $f(x) = \frac{x-2}{x-1}$, show that f is bijective, find f^{-1} . Also find :

(i)
$$x$$
 if $f^{-1}(x) = \frac{5}{6}$
(ii) $f^{-1}(2)$ (2017)

Ans. $f : A \rightarrow A$

Let $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$

$$\Rightarrow \frac{x_1 - 2}{x_1 - 1} = \frac{x_2 - 2}{x_2 - 1}$$
$$\Rightarrow x_1 = x_2$$
$$\Rightarrow f \text{ is one-one}$$
$$\text{Now } y = \frac{x - 2}{x - 1} \Rightarrow x - 2 = xy - y$$

$$\Rightarrow x(y-1) = y-2$$

$$\Rightarrow x = \frac{y-2}{y-1}$$

For each $y \in A = R - \{1\}$, there exists $x \in A$

Thus f is onto. Hence f is bijective

and
$$f^{-1}(x) = \frac{x-2}{x-1}$$

(i) $f^{-1}(x) = \frac{5}{6} \Rightarrow \frac{x-2}{x-1} = \frac{5}{6} \Rightarrow x = 7$
(ii) $f^{-1}(2) = 0$

40. Let A = R - {2} and B = R - {1}. Consider the function $f : A \to B$ defined by $f(x) = \frac{x-1}{x-2}$ Prove that f is one-one and onto function. Also, find $f^{-1}(x)$. If $f^{-1}(x) = 7$, find x. (2017) Ans. For one-one

Let
$$x_1, x_2 \in x_1$$
 such that $f(x_1) = f(x_2)$

$$\frac{x_1 - 1}{x_1 - 2} = \frac{x_2 - 1}{x_2 - 2}$$

$$\Rightarrow x_1 x_2 - 2x_1 - x_2 + 2 = x_1 x_2 - x_1 - 2x_2 + 2$$

$$\Rightarrow -x_1 = -x_2$$

$$\Rightarrow x_1 = x_2$$

So f is one-one

For onto :

Let $y \in B$

Let
$$f(x) = y$$

i.e., $\frac{x-1}{x-2} = y$
 $\Rightarrow x - 1 = xy - 2y$
 $\Rightarrow x - xy = 1 - 2y$
 $\Rightarrow x = \frac{1-2y}{1-y} \in A \forall y \in B$

 $\therefore f$ is onto 2

So f is invertible &
$$f^{-1}$$
: B \rightarrow A defined as $f^{-1}(x) = \frac{1-2x}{1-x}$
 $\Rightarrow \frac{1-2x}{1-x} = 7$ (since $f^{-1}(x) = 7$)
 $\Rightarrow 1-2x = 7-7x$
 $\Rightarrow 5x = 6$
 $\Rightarrow x = \frac{6}{5}$

41. Let * be a binary operation on $R - \{-1\}$, defined by a * b = a + b + ab for all a, b $\in R - \{-1\}$. Prove that * is commutative and associative on $R - \{-1\}$. Find the identity element for * on $R - \{-1\}$. (2017)

Ans. Let $a, b \in R - \{-1\}$ a * b = a + b + ab b * a = b + a + ba $\therefore a * b = b * a \forall a, b \in R \sim \{-1\}$ $\therefore * \text{ is commutative}$ Let $a, b, c \in R - \{-1\}$

$$a * (b * c) = a * (b + c + bc)$$

= $a + b + c + bc + a(b + c + bc)$

TEACHERS FORUM

= a + b + c + bc + ab + ac + abc (a * b) * c = (a + b + ab) * c = a + b + ab + c + (a + b + ab)c = a + b + ab + c + ac + bc + abcSo a * (b * c) = (a * b) * c $\therefore * \text{ is associative}$

For identity

Let $e \in R - \{-1\}$ be identity element

- $\therefore a * e = a = e * a$ a * e = a $\therefore a + e + ae = a$ e (1 + a) = 0 $\Rightarrow e = 0 \text{ as } 1 + a \neq 0$
- : 0 is the identity element

42. Let A = R - {3}, B = R - {1}. Let f : A
$$\rightarrow$$
 B be defined by $f(x) = \frac{x-2}{x-3}$, $\forall x \in A$
Show that f is bijective. Also, find

(i) x, if
$$f^{-1}(x) = 4$$

(ii) $f^{-1}(7)$ (2017)

Ans.

Let
$$x_1, x_2 \in A$$
 and $f(x_1) = f(x_2)$

$$\Rightarrow \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$$

$$\Rightarrow (x_1 - 2)(x_2 - 3) = (x_1 - 3)(x_2 - 2)$$

$$\Rightarrow x_1 x_2 - 3x_1 - 2x_2 + 6 = x_1 x_2 - 2x_1 - 3x_2 + 6$$

$$\Rightarrow x_1 = x_2$$

Hence f is a one-one function

Let
$$y = \frac{x-2}{x-3}$$
 for $y \in \mathbb{R} - \{1\}$
 $\Rightarrow x = \frac{3y-2}{y-1}$; $y \neq 1$

 $\therefore \forall y \in \mathsf{R} - \{1\}, x \in \mathsf{R} - \{3\}$

i.e. Range of f = co-domain of f.

Hence f is onto and so bijective.

1

(i)
Also,
$$f^{-1}(x) = \frac{3x-2}{x-1} x \neq 0$$

(i)
Now, $f^{-1}(x) = 4$
 $\Rightarrow \frac{3x-2}{x-1} = 4$
 $\Rightarrow x = 2$
(ii)
and $f^{-1}(7) = \frac{19}{6}$

- 43. Let A = R x R and let * be a binary operation on A defined by (a, b) * (c, d) = (ad + bc, bd) for all (a, b), (c, d) ∈ R x R.
 - (i) Show that * is commutative on A.
 - (ii) Show that * is associative on A.
 - (iii) Find the identity element of * in A.

Ans. (i)
$$(a, b) * (c, d) = (ad + bc, bd)$$

Now, $(c, d) * (a, b) = (cb + da, db) = (ad + bc, bd) = (a, b) * (c, d)$

$$\Rightarrow$$
 * is commutative.

(ii)
$$[(a, b) * (c, d)] * (e, f) = (ad + bc, bd) * (e, f) = (adf + bcf + bde, bdf)$$

 $(a,b) * [(c, d) * (e, f)] = (a, b) * (cf + de, df) = (adf + bcf + bde, bdf)$

 \Rightarrow * is associative.

Let (e_1, e_2) be the identity element of A.

$$\Rightarrow (a, b) * (e_1, e_2) = (a, b) = (e_1, e_2) * (a, b)$$
$$\Rightarrow (ae_2 + be_1, be_2) = (a, b) = (e_1b + e_2a, e_2b)$$
$$\Rightarrow ae_2 + be_1 = a \text{ and } be_2 = b \Rightarrow e_1 = 0, e_2 = 1$$

 \Rightarrow (0, 1) is the identity on A.

44. Let $f: \mathbb{N} \to \mathbb{N}$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: \mathbb{N} \to \mathbb{S}$ is invertible (where S is range of *f*). Find the inverse of *f* and hence find f^{-1} (31) and f^{-1} (87). (2016, 2015)

Ans. Let $x_1, x_2 \in \mathbb{N}$ and $f(x_1) = f(x_2)$ $4 x_1^2 + 12 x_1 + 15 = 4 x_2^2 + 12 x_2 + 15$ $\Rightarrow 4(x_1^2 - x_2^2) + 12(x_1 - x_2) = 0 \Rightarrow (x_1 - x_2)(4 x_1 + 4 x_2 + 12) = 0$ $\Rightarrow x_1 - x_2 = 0 \text{ or } x_1 = x_2 \text{ as } 4 x_1 + 4 x_2 + 12 \neq 0, x_1, x_2 \in \mathbb{N}$ $\therefore f \text{ is a } 1 - 1 \text{ function}$ $f \colon \mathbb{N} \to \mathbb{S} \text{ is onto as co-domain} = \text{ range}$ Hence f is invertible. $y = 4x^2 + 12x + 15 = (2x + 3)^2 + 6$

TEACHERS FORUM

(2017)

$$\Rightarrow x = \frac{\sqrt{y-6-3}}{2}$$

$$\therefore f^{-1}(y) = \frac{\sqrt{y-6-3}}{2}, y \in s$$

$$f^{-1}(31) = \frac{\sqrt{31-6-3}}{2} = 1$$

$$f^{-1}(87) = \frac{\sqrt{87-6-3}}{2} = 3$$

45. Let A = R - {3} and B = R - {1}. Consider the function $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$. Prove that *f* is one - one and on to function. Hence find $f^{1}(x)$. (2016)

Ans. Let $x_1, x_2 \in R - \{3\}$ such that $f(x_1) = f(x_2)$

$$\Rightarrow \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$$
$$\Rightarrow x_1 x_2 - 2x_2 + \delta - 3x_1 = x_1 x_2 - 2x_1 + 3x^2 + \delta$$
$$\Rightarrow x_1 = x_2$$

 $\therefore f: A \rightarrow B$ is one-one

Let $y \in R - \{1\}$ such that f(x) = y

$$\frac{x-2}{x-3} = y$$

$$\Rightarrow x = \frac{2-3y}{1-y} \in A, x \neq 3$$

Corresponding to every $y \in B$, there exists $\frac{2-3y}{1-4} \in A$, so that $\frac{2-3y}{1-y} = x \Rightarrow f$ is onto

$$\therefore f^{-1}(x) = \frac{2 - 3x}{1 - x}$$

46. Let A = R x R and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Prove that * is commutative and associative. Find the identity element for * on A and hence find the inverse of elements of A.

Ans. Commutativity: let $(a, b), (c, d) \in A$, then

(a, b) * (c, d) = (a + c, b + d) and (c, d) * (a, b) = (c + a, d + b)for all a, b, c, d \in R, a + c = c + a and b + d = d + b

 \therefore (a, b) * (c, d) = (c, d) * (a, b)

∴ * is commutative on A

Associativity: For any (a, b), (c, d), (e, f) $\in A$

$$\{(a, b) * (c, d)\} * (e, f) = (a + c, b + d) * (e, f)$$
$$= (a + c + e, b + d + f)$$
Similarly (a, b) * {(c, d) * (e, f)} = (a + c + e, b + d + f)

TEACHERS FORUM

* is associative on A

Let (x, y) be identity element in A, then (a, b) * (x, y) = (a, b)

or
$$(a + x, b + y) = (a, b) \Rightarrow x = 9y = 0 \in R$$

 \therefore (0, 0) is the identity element in A

Let (l, m) be inverse of (a, b) in $A \Rightarrow (a, b) * (l, m) = (0, 0)$

$$\Rightarrow (a + l, b + m) = (0, 0)$$

$$\Rightarrow l = -a, m = -m;$$
 which lies in R

∴ inverse is (–a, –b)

47. Consider
$$f: \mathbb{R}_{+} \to [-9, \infty]$$
 given by $f(x) = 5x^{2} + 6x - 9$. Prove that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{54 + 5y} - 3}{5}\right)$. (2015)

Ans. $f: \mathbb{R}_{+} \rightarrow [-9, \infty]$;

$$f(x) = 5x^{2} + 6x - 9;$$

$$f^{-1}(y) = \frac{\sqrt{54 + 5y} - 3}{5}$$

$$f \circ f^{-1}(y) = \left\{\frac{\sqrt{54 + 5y} - 3}{5}\right\}^{2} + 6\left\{\frac{\sqrt{54 + 5y} - 3}{5}\right\} - 9 = y$$

$$f^{-1} \circ f(x) = \frac{\sqrt{54 + 5(5x^{2} + 6x - 9) - 6} - 3}{5} = x$$

Hence 'f' is invertible with $f^{-1}(y) = \frac{\sqrt{54 + 5y} - 3}{5}$

48. A binary operation * is defined on the set $x = R - \{-1\}$ by

 $x * y = x + y + xy, \forall x, y \in X.$

Check whether * is commutative and associative. Find its identity element and also find the inverse of each element of X. (2015)

Ans. (i) commutative : let $x, y \in \mathbb{R} - \{-1\}$ then

 $x * y = x + y + xy = y + x + yx = y * x \therefore x$ is commutative

(ii) Associative : let x, y,
$$z \in R - \{-1\}$$
 then
 $x * (y * z) = x * (y + z + yz) = x + (y + z + yz) + x (y + z + yz)$
 $= x + y + z + xy + yz + zx + xyz$
 $(x * y) * z = (x + y + xy) * z = (x + y + xy) + z + (x + y + xy) \cdot z$
 $= x + y + z + xy + yz + zx + xyz$

TEACHERS FORUM

Ζ

x * (y * z) = (x * y) * z

∴ * is Associative

(iii) Identity Element : let $e \in R - \{-1\}$ such that $a * e = e * a = a \forall a \in R - \{-1\}$

 \therefore a + e + ae = a \Rightarrow e = 0

(iv) Inverse : let a * b = b * a = e = 0 ; $a, b \in R - \{-1\}$

 $\Rightarrow a + b + ab = 0$ $\therefore b = \frac{-a}{1+a} \text{ or } a^{-1} = \frac{-a}{1+a}$

49. If the function $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x - 3 and $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = x^3 + 5$, then find the value of (fog) ⁻¹ (x). (2015)

Ans. Let
$$y = (fog)(x) [say y = h(x)]$$

$$f[g(x)] = f(x^{3} + 5)$$

= 2 (x³ + 5) - 3 = 2 x³ + 7
$$\therefore x = \sqrt[3]{\frac{y - 7}{2}} = h^{-1}(y)$$

$$\therefore (fog)^{-1} = \sqrt[3]{\frac{x - 7}{2}}$$

50. Let $A = Q \times Q$, where Q is the set of all rational numbers, and * be a binary operation defined on A by (a, b) * (c, d) = (ac, b + ad), for all (a, b) (c, d) $\in A$. (2015)

Find (i) the identity element in A. (ii) the invertible element of A.

Ans. Let (x, y) be the identity element in $Q \times Q$, then

$$(a, b) * (x, y) = (a, b) = (x, y) * (a, b) \forall (a, b) \in Q \times Q$$
$$\Rightarrow (ax, b + ay) = (a, b)$$
$$\Rightarrow a = ax \text{ and } b = b + ay$$
$$\Rightarrow x = 1 \text{ and } y = 0$$

 \therefore (1, 0) is the identity element in Q x Q

Let (a, b) be the invertible element in Q × Q, then

there exists $(\alpha, \beta) \in Q \times Q$ such that

$$(a, b) * (\alpha, \beta) = (\alpha, \beta) * (a, b) = (1, 0)$$

$$(a\alpha, b + a\beta) = (1, 0)$$

$$\Rightarrow \alpha = \frac{1}{a}, \beta = \frac{-b}{a}$$
the invertible element in A is $\left(\frac{1}{a}, -\frac{b}{a}\right)$

51. Check whether the operation * defined on the set $A = R \times R$ as

(a, b) * (c, d) = (a + c, b + d)

is a binary operation or not, where R is the set of all real numbers. If it is a binary operation, is it commutative and associative too ? Also find the identity element of *.

Ans.

$$(a, b) * (c, d) = (a + c, b + d) \forall a, b, c, d \in R$$

Since $a + c \in R$ and $b + d \in R \Rightarrow (a + c, b + d) \in R \times R$

i.e. '*' is binary operation

For commutative

 \Rightarrow '*' is commutative

For Associative

Let (a, b), (c, d), (e, f)
$$\in$$
 R x R = A
[(a, b) * (c, d)] * (e, f) = (a + c, b + d) * (e, f)
= (a + c + e, b + d + f) \rightarrow (1)
again (a, b) * [(c, d)] * (e, f)] = (a, b) * (c + e, d + f)
= (a + c + e, b + d + f) \rightarrow (2)

(1) & (2) \Rightarrow '*' is associative

For identity element

Let $(e_1, e_2) \in R \times R$ be the identity element (if exists)

then
$$(a, b) * (e_1, e_2) = (a, b) = (e_1, e_2) * (a, b)$$

 $(e_1, e_2) = (0, 0) \in R \times R$

52. Let A = { -1, 0, 1, 2}, B = { -4, -2, 0, 2} and f, g : A \rightarrow B be functions defined by $f(x) = x^2 - x, x \in A$ and $g(x) = 2 | x - \frac{1}{2} | -1, x \in A$. Find gof (x) and hence show that f = g = gof. (2015)

$$f(x) = x^2 - x$$
; $x \in \{-1, 0, 1, 2\}$

f(-1) = 2, f(0) = 0, f(1) = 0, f(2) = 2

$$\therefore f = \{(-1, 2), (0, 0), (1, 0), (2, 2)\}$$
$$g(x) = 2\left|x - \frac{1}{2}\right| - 1 \forall x \in \{-1, 0, 1, 2\}$$
$$g(-1) = 2, g(0) = 0, g(1) = 0, g(2) = 2$$

TEACHERS FORUM

(2015)

 $g = \{(-1, 2), (0, 0), (1, 0), (2, 2)\}$ $(g \text{ of}) (x) = g (f (-1), g (f (0), g (f (1), g (f (2) \forall x \in A)$ = 2, 0, 0, 2 $g \text{ of } = \{(-1, 2), (0, 0), (1, 0), (2, 2)\}$ Hence f = g = g o f

ENTRANCE CORNER

- 1. Let *A* and *B* be two sets containing 2 elements and 4 elements respectively. The number of subsets of *A* x *B* having 3 or more elements is
 - (a) 211 (b) 256 (c) 220 (d) 219 (2013)

2. The domain of the function $f(x) = \frac{1}{\sqrt{|x| - x}}$ is

- (a) $(-\infty, 0)$ (b) $(-\infty, \infty) \{0\}$ (c) $(-\infty, \infty)$ (d) $(0, \infty)$ (2011)
- 3. Let S = {1,2,3,4}. The total number of unorderd pairs of disjoint subsets of S is equal to
 - (a) 25 (b) 34 (c) 42 (d) 40 (**2010**)
- 4. Let $A = \{x, y, z\}$. $B = \{a, b, c, d\}$ Which one of the following is not a relation from A to B
 - (a) { (x,a) , (x,c) } (b) { (y, c) , (y,d) }

(c) { (z,a), (z,d) } (d) { (z,b), (y,b) (a,d) }

(e) {(x,c)}

- 5. If A = $\{1,2,3\}$, B = $\{1, 4, 6, 9\}$ and R is a relation from A to B defined by 'x' is greater than y'. The ange of R is
 - (a) {1,4,6,9 } (b) { 4,6,9 } (c) {1} (d) None of these (2009)
- 6. Let A = {p, q, r}. Which of the following is an equivalence relation on A

(a) R ₁ = { (p,q) , (q,r) ,(p,r) (p,p)}	(b) R ₂ = {(r,q) , (r,p) , (r,r) ,(q,q) }	
(c) R ₃ = { (p,p) , (q,q,),(r,r) ,(p,q) }	(d) None of these	(2009)

- 7. If A = { x: x is a multiple of 4 } and B = { x : x is a multiple of 6 } , then A \cap B consists of all multiples of
 - (a) 16 (b) 12 (c) 8 (d) 4 (**2005**)

(2010)

ANSWERS

1. (d)	2. (a)	3. (d)	4. (e)
5. (c)	6. (d)	7. (b)	

 $\diamond \diamond \diamond \diamond \diamond$

•